
Physically Based Shading

Joshua Bainbridge
MSc Computer Animation and Visual Effects,

Bournemouth University

Figure 1: Ceramic Cup 2015

Abstract

This paper outlines the development of a generalised shading model
and its implementation. The chosen example subject is a ceramic
cup, demonstrating a layered approach to shader development. The
design will be based upon physical laws reflecting modern trends
in global illumination and as result should be robust in a variety of
lighting conditions. The rendering context will be Photorealistic
Renderman 18 accessed through the API and python bindings, while
using standard RSL 2.0 for shader development.

Keywords: physically based, shading, global illumination

1 Reference

Once I had found a subject I started taking reference images and
measurements. To do this I used a long focal length to minimise
perspective distortion as well as natural lighting to get a good repre-
sentation of colour. I then also photographed specific features of the

Figure 2: Reference

cup, such as chips, coffee stains and lime scale as seen in Figure 3.
These are all things that will need to be synthesised when composing
the shaders. The composition of the shader will need to reflect the
basic elements that the mug is constructed from as well as the afore-

Figure 3: Features

mentioned features. These break down into the clay base as well as
the ceramic glazing which is itself composed of two elements. The
first of these being the the outer glass layer, usually formed of silicon
dioxide which is an insulator (dielectric) material and as result does
not alter the colour of reflection. The second is the pigmentation
that has a diffused response and is composed of metal oxides that
conduct electromagnetic energy a in wave-length dependent manner.
This is what causes the change in colour on the surface. Construction
of these elements will use a layering system where one can mask
or reveal a layer beneath. As for the ceramic glazing, this will be
contained within a single shader to allow for easy development when
combining specular and diffuse distributions.

2 Theory

In this project I will be using the ray-trace hider within Renderman
while limiting the distribution of rays to a single path. This process
is called path tracing and was originally developed in a paper called
”The Rendering Equation” [Kajiya 1986] by Kajiya. The equation
can be written in the form:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

fr(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi

This describes a recursive integral of passing electromagnetic en-
ergy across the hemisphere of a single position on a surface. These
sample positions then undergo convolution across a two dimensional
array forming an image. It is often better to express this in terms
of an integration of path space as described by Eric Veach [Veach
1998] rather than a recursive approach as this allows for a clearer
explanation of advance techniques. Kajiya explained that the contri-
bution of each vertex along a path is equal or less than the previous



vertex. This means that all vertices lower in a distributed tree have
greater importance than the ones higher, resulting in more optimal
sampling when branching is reduced.

Russian roulette [Szcsi et al. 2003] is an optimisation that intro-
duces noise but can reduce computation considerably by reducing
ray branching and give early termination of paths with minimal
contribution. It involves randomly selecting between options based
upon their probabilities and then dividing the resulting value by that
probability resulting in an unbiased sample. This can be done when
deciding on whether or not to terminate a path or when selecting a
layer to sample from a material. Russian roulette has been imple-
mented to reduce ray branching and optimise sampling in both these
ways within the layering system.

The rendering equation can also be separated into two distinct inte-
grals as described by Philip Dutre [Dutre et al. 2006] and is written
as:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ)

Lr(x→ Θ) =

∫
Ωx

fr(x,Ψ→ Θ)L(y ← −Ψ)cos(Nx,Ψ)dωΨ

= Ldirect + Lindirect

Ldirect =

∫
A

fr(x,−→xy → Θ)L(y → −→yx)V (x, y)G(x, y)dAy

Lindirect =

∫
Ωx

fr(x,Ψ→ Θ)Li(y ← −Ψ)cos(Nx,Ψ)dωΨ

This is used within the shaders to deterministically sample the lights
directly resulting in what is commonly called next event estimation.
Renderman’s pipeline methods for RSL facilitate such separation
making implementation within the shader relatively simple.

For direct sampling, different strategy can be used and combined
optimally using multiple importance sampling. This is done when
creating samples from both the shader as well as the light and weight-
ing the two using a heuristic. The heuristic however must be chosen
carefully as it can introduce variance when not optimal or when the
sampling strategies used by both the light and/or the shader are poor
representations of their evaluation. Multiple importance sampling
can be written as

〈Ij〉 =

m∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)

where Xi,j represents the samples produced by each distribution
strategy and wi(Xi,j) is the heuristic that weights the samples con-
tribution according to its probability density. Veach [Veach 1998]
defined what he calls the power heuristic that is near optimal as long
as the distributions of both the shader and light are good. Multiple
importance sampling using Veach’s power heuristic can be handled
externally from the shading context in RSL as long as the shaders
distribution function conforms to the standard interface.

This interface involves two methods. The first of which is a means to
approximately create samples according to the BRDF and also return
their probability. An example expressed below creates samples
according to a cosine around the normal

x = cos(2πr1)
√

1− r2

y = sin(2πr1)
√

(1− r2)

z =
√
r2

where ri represents a uniform random variable. These equations
are derived by establishing a pdf that approximates the BRDF and
calculating its cdf. This is then inverted and sampled producing
the correct distribution according the original pdf. Then all that is
needed is to transform the two samples from spherical coordinates
into cartesian space. The probability is the dot product between the
sample direction and normal of the surface. It is written in the form:

cos θ

π

This distribution is then rotated around the direction of reflectance.
Using this distribution could result in samples falling beneath the
surface resulting in zero contribution making it less efficient than
more advanced methods such as described by Walter [Walter et al.
2007]. The second method needed is the evaluation of the BRDF
itself. Both of these methods are passed a structure that holds all
samples and probabilities for both the lights and the shaders. This
is then used for multiple importance sampling. The probability is
also important to maintain an unbiased numerical integration using a
Monte Carlo estimator because the sampled value must be multiplied
by the inverse of the distribution probability.

Calculating the distribution at the surface requires evaluating the
BDRF. There are many different models of BRDF but to be physi-
cally plausible it must be energy conserving and behave with reci-
procity. This means that the surface cannot distribute more light than
it receives and if the incident and reflecting directions were to be
swapped, the evaluation would still be the same. Another property
required by a physically plausible BRDF is that it take into account
micro-facet theory. This is the evaluation of how much the surface
normal may vary on a statistical level creating a more accurate dis-
tribution. There are two different types of micro-facet BRDFs, the
first is a specular model where each facet acts as a perfect reflector,
the second being a diffuse model were the statistical facets behave
with a lambertian response.

Micro-facet BRDFs are generally based upon the same Cook-
Torrance [Cook and Torrance 1982] model. This can be written
as

f(l, v) =
F (l, h)G(l, v, h)D(h)

4(n.l)(n.v)

where l and v are the look and view directions while h is the half-way
vector. The functions F , G and D represent the Fesnel, geometric
and distribution parts respectively. The half-way vector is calculated
by normalizing the sum of both the light and the view vectors. The
denominator is a normalization factor as described by Cook.

The Fresnel part describes how light reflects at grazing angles ac-
cording to the densities of the current media and the surface. Here
we use Shlick’s approximation (for non-metal surfaces) that can be
written as

F (l, h) = (
n1 − n2

n1 + n2
)2 + (1− (

n1 − n2

n1 + n2
)2)(1− cos(l.h))5

where n1 and n2 are the indices of refraction for the current medium
and the surface material.

As for the distribution function, this is largely what defines the
different BRDFs from each other and is the probability of a facet
facing the half-way vector. We will use the Beckham model as it
gives reasonable results for the computational cost. It can be written
in the form

D(h) =
e

(n.h)2−1

r2(n.h)2

πr2(n.h)4

where e is the base of natural logarithms and n is the macro normal
of the surface. The r variable represents the surface’s roughness
giving the distribution a wider lobe with higher values.



The geometric function represents the occlusion of micro-facets and
has two parts. The first part is the visibility of the facet in the view
direction. If the facet is not visible then it does not contribute any
radiance. The second represents the visibility in the light direction
and again if not visible, it wont contribute radiance. It can be written
as

G(l, v, h) = min

{
1,

2(n.h)(n.v)

(v.h)
,

2(n.h)(n.l)

(v.h)

}
where n is the macro normal of the surface.

3 Implementation

For implementation I started by constructing the geometry from the
reference and measurements. The model was built to scale as this
would make a difference when lighting the scene. Accessing the
Renderman API was done through the python bindings for multiple
reasons. Primarily the choice was due to having experience using
RIB and wanting to learn something new. It also allowed me to
compile the shaders when running the script which made testing
shader development easer. Lastly it meant I could write a parser to
take an .obj and convert it to a format required by the API. I did
not write the original python code for parsing the file but instead
edited a sample from online, this has been cited in the source. The
program works by parsing in a single .obj file as an argument (must
have UVs) when running the script from bash.

Figure 4: Loaded Objects

I started lighting the scene by adding two standard physically based
area lights. One on either side of the model with varying intensities
and temperature. I then created a physical environment light that
used one of the environment maps shipped with Renderman to save
on space. It was important that the shaders for these light were built
using the pipeline methods in RSL and had the correct interfaces to
work with my own surface shaders.

Figure 5: Area lights

For the render options I set the hider to ray-trace and the integration
mode to path. This would later then be detected by the shaders and
control the sampling count. Using ”it” also allowed for progressive
rendering which meant instant feedback when later developing the
shaders. I also added slight depth of field to the camera for realism.

I didn’t want to just create a single shader for representing a single
object but rather look into how a composition of shaders could be
developed for many objects. Anders Langlands wrote an interesting
paper named ”Physically Based Shader Design in Arnold” [Lang-
lands 2014] where he outlined the idea of stacked BRDF design for

Figure 6: Environment Light

shader development. Here I have developed three shaders with the
first being a basic diffuse. The second is a dielectric shader which
is simply an extension. Lastly there is a layered shader that can
take two co-shaders that conform to a specific pipeline specification,
including itself. This allows for infinite layering of shaders and uses
painted and procedural masks that are sampled according to russian
roulette. As a result multiple layers will increase variance but will
minimal impact on render time and iterative feedback.

3.1 Layered Shader

The layered shader uses the new pipeline methods which include
construct, begin, displacement, prelighting and lighting. Construct
is used to initiate values for that shader instance and begin is run
every patch. Displacement is the same as in traditional shaders and
mutates the surface normal and position. Finally prelighting is used
for anything that can be cached and does not rely on camera or light
information while lighting is the main method for computing the
light contribution. Russian roulette is used to pick a shader based
upon the mask and run it’s own methods. This could also be another
layered shader, repeating the process. Russian roulette is also used
as an optimisation to perform early path termination.

The mask is a combination of both an optional texture as well as an
fbm noise. This is useful as some layers may need a mask purely
controlled with a texture while others may benefit from procedural
techniques.

The shader can also change the normal direction based upon the
mask as a height-field. This gives the impression of thickness to
each layer. Using a method Maas [Maas 2006] describes, I find
the difference between the geometric and smoothed normal before
calculating the displaced normal. This difference is then added
back to the normal to prevent faceting. This faceting is due to the
displaced normal being calculated from the geometry and not the
original data passed to the shader. This new normal is then passed
to the co-shaders.

Figure 7: Layer Bump Mapping



3.2 Diffuse Shader

The diffuse shader implements an interface that can be integrated
into Renderman’s physically based workflow. It starts by construct-
ing a more advanced shading context from the stdrsl library. This
can then be passed to other functions defined outside the shader. Dis-
placement is rather simple and just receives and passes the normal
data directly to the context.

The prelighting method checks to see if a texture has been passed
and if so gets the colour values. If required, it will also correct
the texture and convert it from sRGB to linear colour space. As
the BRDF being used is also from stdrsl it is initiated here with
the surface colour. The model used for the BRDF is that described
by Oren et al. in ”Generalization of Lambert’s Reflectance Model”
[Oren and Nayar 1994].

Within the main lighting function, the lighting is divided as previ-
ously explained into both direct and indirect integrals. The direct
lighting call passes in itself as a material which in turn access the
BRDF member that was previously initiated. This also handles mul-
tiple importance sampling using Veach’s power heuristic. Before
continuing the path using indirect sampling the sample manager is
first queried to gather a sample count from the render context. I
added this because it meant the shaders could be used for distributed
rendering as well as path tracing. If the the integration mode has
been set to path then the sample manager will return one and the
path won’t branch. The method for indirect lighting is called using a
standard cosine distribution for Lambertian response. Then both the
direct and indirect lighting contributions are summed to produce the
final colour.

3.3 Dielectric Shader

Creating the dielectric shader was simply an extension of the diffuse
while adding a dielectric reflector and blending between the two
using a Fresnel calculation.

The shader also perturbs the dielectric surface normal using another
fbm noise to create subtle changes and imperfections in the specular
reflection. A simple noise function is used when getting the diffuse
colour to add pigment variation as this was a characteristic I noticed
in the reference model. This shader also added a second BRDF

Figure 8: Dielectric Bump Mapping

Figure 9: Pigment Variation

for the specular component. This needed initiating in the same way
as the diffuse component with a possible texture lookup. I used the

principled Disney model [McAuley et al. 2012] from stdrsl with a
Beckham distribution. This works in the same way as described in
the theoretical section but does not include the Fresnel term. It is
calculated separately and used when summing both the specular and
diffuse contributions. This is because light contacting the surface at
greater angles have a higher possibility of refracting and as a result
interacting with the diffused pigment below the dielectric surface.

The lighting method now also calls the indirect specular using the
specular BRDF. This is passed a pointer to an array of structs that
contain radiance information to be shared with the direct lighting call.
As previously pointed out, these structs contain lighting information
from both the lights and the shader to be used within the rendering
engine to perform multiple importance sampling. Then the direct
and indirect specular contributions are summed and weighted before
being added to the equivalent diffuse contributions. This produces
the final colour.

4 Conclusion

To create the finished cup I used the layer shader with a combination
of both diffuse and dielectric co-shaders totalling seven shader in-
stances. The four main layers being clay base, ceramic coating, lime
scale and then coffee stains can be seen in Figure 10 in a clockwise
order starting from the top left. Both textures and procedural noise
in the layer was used to mask the layers. Overall I believe the project

Figure 10: Layers

was successful in reproducing the the cup in realistic way. With
some more development these shaders could also be further gener-
alised to a wider range of material types with greater control. After
testing the cup in alternative lighting conditions, the shaders appear
to respond in a believable way, integrating into their environment.

References

COOK, R. L., AND TORRANCE, K. E. 1982. A reflectance model
for computer graphics. ACM Trans. Graph. 1, 1 (Jan.), 7–24.

DUTRE, P., BALA, K., BEKAERT, P., AND SHIRLEY, P. 2006.
Advanced Global Illumination. AK Peters Ltd.

KAJIYA, J. T. 1986. The rendering equation. In Proceedings of the
13th Annual Conference on Computer Graphics and Interactive
Techniques, ACM, New York, NY, USA, SIGGRAPH ’86, 143–
150.

LANGLANDS, A. 2014. Physically based shader design in arnold. In
SIGGRAPH 2014 Course: Physically Based Shading in Theory
and Practice.



MAAS, D. 2006. What the rispec never told you. In ACM SIG-
GRAPH 2006 Courses, ACM, New York, NY, USA, SIGGRAPH
’06.

MCAULEY, S., HILL, S., HOFFMAN, N., GOTANDA, Y., SMITS,
B., BURLEY, B., AND MARTINEZ, A. 2012. Practical physically-
based shading in film and game production. In ACM SIGGRAPH
2012 Courses, ACM, New York, NY, USA, SIGGRAPH ’12,
10:1–10:7.

OREN, M., AND NAYAR, S. K. 1994. Generalization of lambert’s
reflectance model. In Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’94, 239–246.

SZCSI, L., SZIRMAY-KALOS, L., AND KELEMEN, C. 2003. Vari-
ance reduction for russian-roulette. In WSCG.

VEACH, E. 1998. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford, CA, USA. AAI9837162.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE, K. E.
2007. Microfacet models for refraction through rough surfaces. In
Proceedings of the 18th Eurographics Conference on Rendering
Techniques, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, EGSR’07, 195–206.


